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Abstract 

 
The problem of large amplitude, nonlinear, rolling in the presence of a stochastic beam sea has been 
approached several times in the past. However, most of the published work is devoted to the 
consideration of the case where the bandwidth of the excitation (input process) is greater than that 
of the rolling ship (output process). As a result the complex nonlinear roll dynamics cannot exhibit 
all its typical peculiarities and in particular no consideration is given to the very dangerous 
possibility of bifurcations and jumps of amplitude as precursors of an eventual degeneration to 
chaotic behaviour. This possibility was proposed long ago in the narrow band stochastic case and 
successively revealed experimentally in regular beam waves. In the meantime the possibility of 
bifurcations in the presence of stochastic excitation was confirmed together with the validity of 
Gaussian methods to this purpose. In this paper, the hypothesis of “artificial” narrow band sea 
spectrum is abandoned and the case of Pierson-Moskowitz case is analysed by means of the 
cumulant-neglect closure method. The strong effect of non linearities is highlighted together with 
the possibility of complex roll dynamics. 

 
 
1. INTRODUCTION 
 
The problem of large amplitude, nonlinear, 
rolling in the presence of a stochastic beam sea 
has been approached several times in the past. 
However, most of the published work was 
devoted to the consideration of the case where 
the bandwidth of the excitation (input process) 
is greater than that of the rolling ship (output 
process) so that the complex nonlinear roll 
dynamics cannot exhibit all its typical 
peculiarities and in particular no consideration 
is given to the very dangerous possibility of 
bifurcations and jumps of amplitude as 
precursors of an eventual degeneration to 
chaotic behaviour. 
 
One of the authors already developed different 
stochastic approaches focussing on the 

nonlinear aspects. The possibility of 
bifurcations was identified in the presence of 
narrow band excitation by means of a Gaussian 
Closure of Moments [1,2] and by means of the 
Perturbation Method of Multiple Time Scales 
[3,4]. Later on, the validity of the Gaussian 
approaches to detect complex dynamics and 
multiple solution was confirmed by other 
authors [5]. In both approaches considered in 
[1-4] the narrow band input was produced by 
means of a linear filter acting on white noise. A 
simple linear filter can reproduce any required 
bandwidth, but generally it distributes too 
much energy in the low frequency side and 
thus it cannot properly shape the typical sea 
spectra or it can give only a rough 
approximation of them, especially when non 
sharp peaked functions are considered. 
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More powerful nonlinear methods for treating 
stochastic processes have been developed in 
the meantime. They account for large non 
Gaussian behaviour by including statistical 
moments of order higher than that required for 
Gaussian Closure, although some times simple 
Gaussian approaches can give surprisingly 
good fitting of experiments, as observed in  [6]. 
At the same time the simulation of typical sea 
spectra by means of cascades of linear filters 
[7-10] was developed and the transfer function 
and impulse response function for the Pierson 
Moskowith spectrum were obtained [11]. 
 
In this paper we present a novel analysis of 
large amplitude nonlinear rolling in a stochastic 
beam sea described by an improved linear filter 
reproducing known spectra. The cumulant-
neglect closure method is employed on 
different ship nonlinear characteristics to 
highlight the possibility of complex roll 
dynamics which in the meantime was 
experimentally detected in the ship behaviour 
in regular beam waves [12-13]. 
 
 
2.  THE ROLL MOTION MODELLING IN 
A BEAM WAVES 
 
2.1 Regular waves 
 
The problem of the correct modelling of rolling 
motion in regular beam waves has been 
discussed a number of times in the literature on 
the subject. The conclusions of the different 
authors are not always in agreement as regards 
the degree of nonlinearity and the minimum 
number of degrees of freedom, not to speak of 
the very basic description adopted, i.e. 
concentrated parameters or not. 
 
The differences often depend on the specific 
field of action of the involved persons, stability 
versus seakeeping or manoeuvrability, 
regulatory versus research oriented, nonlinear 
dynamics versus global approaches, etc. On the 
basis of the previous long experience based on 

mixed analytical/experimental approaches, in 
this paper the following assumptions will be 
made about the mathematical model: 
 
- nonlinear damping and restoring moments; 
- frequency dependent excitation; 
- one degree of freedom. 
 
The above hypotheses can appear questionable, 
but in all experiments proved good simulation 
capability. The first and the third are also the 
basis for present mathematical modelling of 
intact stability criteria. 
The assumed model will thus be: 
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A linear plus cubic damping (which can be 
transformed in a linear plus quadratic one by 
energy balance), a cubic polynomial righting 
moment (valid for moderate transversal 
inclinations) and a quadratic in the frequency 
excitation to account for diffraction [14] are the 
main peculiarities of the adopted model. The 
coefficient 0α  is the effective wave slope 
coefficient (the highly questioned factor “r” in 
Weather Criterion), whereas: 
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is the wave steepness with Mα  the maximum 
wave slope. 
 
The assumed excitation belongs to the general 
family containing three terms, respectively 
related to the wave amplitude or slope and to 
its first and second derivatives. In the 
experiments in regular waves it was found that 
the intermediate term does not play a 
significant role and it was omitted in present 
study. 
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The nonlinear features of Eq. 1 have been 
thoroughly analysed in the past by means of 
approximate solutions obtained through 
perturbation methods [15]. Recently, the 
existence of bifurcations and jumps of 
amplitude has been experimentally confirmed 
in beam waves [12,13]. 
 
 
2.2 Irregular waves 
 
Equation 1 is again the basis for the 
mathematical modelling of roll motion in a 
stochastic environment. The excitation, now is 
irregular and is described by a random process 
which is generally assumed stationary, ergodic, 
Gaussian and described by a spectrum. Very 
often the Pierson-Moskowitz or ITTC and the 
JONSWAP spectra are assumed for the 
description of “realistic” sea waves. While 
these spectral descriptions represent short term 
approaches and hide particularly dangerous 
phenomena like wave grouping, on the other 
hand they are very much used due to their 
relative simplicity. 
 
The assumed mathematical model for the 
description of ship rolling in an irregular beam 
sea is thus: 
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with: 
 

0
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3. THE EXCITATION SPECTRUM 
 
The wave spectrum is usually given in terms of 
wave amplitude spectrum ( )ωζζS . For example 

the Pierson-Moskowitz (PM) spectrum is given 
by: 
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when expressed in terms of the significant 
wave height 3/1h . This spectrum has the 
traditional unimodal shape shown in Fig. 1 
below. The JONSWAP spectrum starts from 
the previous one considering the effect of a 
peak enhancement factor γ  conventionally 
ranging in the interval 71÷  with lower bound 
corresponding to PM and bandwidth 
decreasing as γ  moves towards the upper 
bound. When we consider the excitation of 
angular motions around horizontal axes and in 
particular rolling, we have to introduce an 
additional spectrum, which represents the 
energy spread of waves with reference to the 
maximum wave slope ( )ωααS : 
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which is quite different from previous one, as 
shown in Fig. 1.  
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Fig.  1: Comparison between ITTC Spectrum 
in wave amplitude and in maximum wave 
slope for mh 0.43/1 = . 
 
The spectrum reported in terms of maximum 
wave slope spreads the energy over a much 
greater frequency interval and moves the peak 
and a considerable part of the energy towards 
higher frequencies. These effects are both 
relevant to the discussion on the effective 
excitation intensity “perceived” by a low 
frequency oscillator like the modern passenger 
cruise ships. Apart this, the bandwidth is 
considerably increased and the process cannot 
be in general considered a narrow band one. 
The bandwidth is in any case limited by the 
transfer function between the maximum wave 
slope process )(tMα  and the roll excitation 
moment process )(tM . This transfer function 
has indeed a natural cut-off frequency when the 
wave length falls sensibly below ship breadth 
(say Bw <⋅λ2 , being B the ships breadth at 
waterline). 
 
As a consequence, the excitation can be 
considered really narrow band only when the 
basic process is such, as in the case of extreme 
values of JONSWAP γ  factor or in other 
particular cases like the following waves one. 
We have not to forget, however, that several 

times procedures developed for narrow band 
processes, like for example the Rayleigh 
distribution of peaks, are applied and work 
reasonably well in more general cases. The 
same is often true for other strong hypotheses 
adopted to allow easy “calculability” like 
ergodicity, stationarity, Gaussianity, etc. 
 
 
4. THE REPRESENTATION OF THE 
SPECTRUM THROUGH A FILTER 
 
For reason which will be more evident later, it 
is often convenient to represent the random 
process corresponding to a given spectrum, by 
means of a linear filter or a cascade of filters. 
This is also because a filter can represent an 
idealised spectrum (very close to a real one) of 
which one can easily change some relevant 
parameter to adjust the bandwidth, or some 
other important characteristic, in a controlled 
way. The use of modern wavemakers allows 
then to reproduce the situation from an 
experimental point of view.  
Previous approaches to the problem of 
nonlinear ship rolling in a stochastic beam sea 
have used: 
 
-  a “simple” linear filter and the method of 

closure of moments at Gaussian level [1,2]: 
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- a more sophisticated single linear filter and 
the perturbation method of multiple scales 
in the hypothesis of narrow bandedness of 
the filter [3,4,6]: 
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-  finally, a cascade of two linear filters has 

been proposed to solve some problems 
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connected with the motions of offshore 
structures [7-10]: 
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The capability of these filter approximations to 
reproduce the wave amplitude and the wave 
slope spectrum are shown in Fig. 2 and Fig. 3. 
The parameters defining the filters have been 
computed by means of a standard least-squares 
algorithm.  
 
Filter 1S  is reasonable in terms of peak height 
and bandwidth, but has a non zero value at zero 
frequency and as such it distributes too much 
energy in the low frequency range, which 
usually is a zone where the transfer function to 
ship roll moment is non negligible. On the 
other hand, it is not acceptable when used to 
approximate the maximum wave slope process. 
The filter 2S  is not so good – not so bad in 
both cases, but when used to simulate the 
maximum wave slope process it is not 
narrowbanded. 
 
Filter 3S  is excellent in all zones. In the 
following of this paper we shall develop a 
solution of Eq. 3 for ship rolling in a stochastic 
beam sea by using filter 3S  to give an 
analytical approximation of wave spectrum. 
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Fig.  2: Comparison between ITTC Spectrum 
in wave amplitude (solid line) and the various 
filter approximations for mh 0.43/1 = . 
 
If filter iS  acts on white noise, it produces a 
random process whose spectrum is given by 
the function iS . Each of them corresponds to a 
linear differential equation “translating” the 
effect of the filter transfer function on the white 
noise process )(tw .  
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Fig.  3: Comparison between ITTC Spectrum 
in maximum wave slope (solid line) and the 
various filter approximations mh 0.43/1 = . 
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We have respectively: 
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for 1S  , 
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for 2S  and finally 
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for 3S , with 
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The simple filter 1S  has a considerable tail at 
low frequency whereas the other two don’t 
have. This is due to the presence of the 
frequency in the numerator of the last two. On 
the other hand, 2S  and 3S  involve derivatives 
of the white noise process, which do not exist 
in traditional sense, being white noise not 
differentiable in any point.  
 
An analytical expression for the transfer 
function and impulse function transforming 
white noise in coloured noise following PM 
spectrum has also been obtained by means of a 
manipulation of PM formula instead of 
adopting a linear cascade of filters [11]. This 
expression can also be used in processes 
generating the wave trains. 
 
 
5. THE ROLL MOTION AS A FILTER OF 
WHITE NOISE 
 
Combining together Eq. 1 and Eq. 14, one has 
the mathematical modelling of random rolling 
in a stochastic sea of spectrum given by PM 

(approximated by 3S ). The system can be put 
in normal form in a way as to avoid the 
derivatives of the white noise process )(tw : 
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having posed: 
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With the choice of using the filter to produce 
coloured noise starting from a white noise 
process, which is included in the differential 
equations, the System 15 is Markov with 
additive Gaussian white noise [16]. 
 
We just remind that a random process is 
Markov when the probability law of the 
process in future, once it is in a given state, 
does not depend on how the process arrived at 
the given state and hence Markov property is a 
generalised causality principle and, as such, it 
is a basic assumption that is made in the study 
of stochastic dynamical systems. 
 
System 15 can be cast in the form of an Ito’s 
differential equation: 
 

( )[ ] )(),)()( tCdBdttxhxtAtxd ++⋅= ε          (17) 
 
where the  Anxn  matrix of the linear part of 
System 15 has been separated from the 



8th International Conference on 
the Stability of Ships and Ocean Vehicles 
Escuela Técnica Superior de Ingenieros Navales 

 
501 

nonlinear n -vector  )(th  (the system is 
supposed to be weakly nonlinear due to the 
small parameter ε ) and acknowledgement was 
made of the fact that the white noise process 

)(tw  is the derivative (in generalised sense) of 
a Wiener process )(tB  (Brownian motion). C  
is an  nxm  constant matrix representing the 
white noise action on the differential system. 
The white noise has level 0S  and it is a delta-
correlated random process. 
 
It follows from the above that the transition 
probability density function of the response, 

),,( 00 txtxf , i.e. the probability density that 
the system will be in state x  at time t  given it 
was in state 0x  at time 0t , must satisfy the 
Fokker-Planck-Kolmogorov (FPK) equation: 
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If we now consider the generic polynomial 
function: 
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with  
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the statistical moment of order k can be 
calculated by evaluating the expectation value 
of the function g(x), i.e.: 
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We finally get the following evolutionary 
equation for the k-th order moment: 
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which can be further simplified by 
remembering the linearity of the expectation 
operator. 
 
 
6. THE CLOSURE OF MOMENTS 
 
The procedure given in previous section allows 
an easy computation of the expressions giving 
the evolutionary equations of the 6 first order 
and of the 21 second order moments of System 
15. The stationary solution is then described by 
a set of algebraic equations obtained by setting 
to zero all the time derivatives. It is 
immediately evident that the obtained system is 
not closed since, due to the presence of the non 
linear terms, the 27 equations for the moments 
up to second order involve also third and fourth 
order moments. When additional equations for 
the higher moments are derived, again by 
means of Eq. 21, even higher moments are 
introduced i.e. an infinite hierarchy forms.  
 
To sort out, a way to evaluate the higher order 
moments in terms of lower order ones has to be 
introduced and this originates the so called 
“closure of moments methods”. Alternatively, 
an adjustable non Gaussian probability 
distribution is constructed which contains a 
number of undetermined parameters equal to 
the number of independent equations relating 
unknown moments [17]. 
 
This last procedure makes use of the truncated 
Gram-Charlier expansion, based on Hermite 
polynomials to represent the probability 
density, given the orthogonality relations 
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among the Hermite polynomials and between 
these and the standardised normal probability 
density function. As a consequence, the 
following truncated series representation can be 
introduced: 
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 where m  and s  are mean value and standard 
deviation of the random variable x , while 

)(ξnH  is the n-th Hermite polynomial. The 
probability density defined by Eq. 22  has 

mean value m  and variance 2σ  independently 
on the order N  and on the set of constants 

ncc ,...,1 . These constants are linear 
combinations of the normalised central 
moments and Eq. 22 reduces to a Gaussian 
distribution when all the ic  vanish, hence it is 
particularly useful to approximate non-
Gaussian distributions. 
 
The other approach originates the so called 
“Closur e of moments” methods.  
 
In this paper we remain to second order. The 
simplest way to do that would be just to neglect 
the moments of 3rd and 4th order, but this is 
equivalent to neglect at all the effect of 
nonlinearities. As a consequence, it can only be 
used to obtain a first guess solution for a better 
approach. This is based on neglecting the 
cumulants of 4th order and higher; this allows 
higher order moments to be expressed by 
means of lower order ones as: 
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and the effect of the nonlinearities is explicitly 
taken into account although in an approximate 
way. This method is thus called Gaussian 
closure of moments or 4th order cumulant 

neglect, because due to the closure, all the 
moments can be expressed by means of first 
and second. Gaussian closure of moments, on 
the other hand, is equivalent to statistical 
linearisation and it is widely used (also beyond 
its validity). 
 
The stationary first order and third order 
moments all vanish and we obtain a nonlinear 
algebraic system of 21 equations for the 
stationary second order moments (actually the 
system order reduces a bit due to the structure 
of the dynamical system). This is solved in 
linear approximation, by setting to zero all 
coefficients of nonlinear terms deriving from 
vector h. This linear solution is then used as 
first guess for a multidimensional Newton-
Raphson nonlinear system solver. This last is 
not very efficient, but it was implemented just 
for a first look to the results. Better solution 
will be implemented in next step. 
 
Preliminary results, shown in Fig. 4 to Fig. 6, 
highlight the important effect of nonlinearities 
in the case of realistic wave spectrum. 
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Fig.  4: Effect of righting arm non linearity and 
nonlinear damping on the roll rms value in the 
case 03 >α  (stiffness more than linear). Two 
different values of nonlinear damping have 
been used. The dashed curves refer to the linear 
restoring moment case.  
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Fig.  5: Effect of righting arm non linearity and 
nonlinear damping on the roll rms value in the 
case 03 <α  (stiffness less than linear). Two 
different values of nonlinear damping have 
been used. The dashed curves refer to the linear 
restoring moment case.  
 
 
First of all, it could appear there is a wrong 
indication of the sign of the righting arm non 
linearity. The behaviour of Fig. 3 and Fig. 4, 
indeed is typically reported in studies on roll 
motion as cases with 03 >α . The explanation 
is simple, being usually the response amplitude 
diagram given with respect to the tuning factor  

0/ωω  and assuming that  ω  is the real 
“variable”.  
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Fig.  6: Effect of righting arm non linearity on 
the roll rms value in the case 03 <α  (stiffness 
less than linear). Intermediate values of 

=3α 1.5, 1.75, 1.875, nonlinear damping 
.46.0=δ  

 
Here we are using a real typical sea spectrum 
where the peak frequency is a bit changing 
with significant wave height, but that’s all. 
Once considered a significant wave height, the 
significant frequency for energy transfer is 
fixed. Actually, this is also a quite spread 
interval instead than a single point when we 
consider the maximum wave slope spectrum. 
To try to highlight the nonlinear features and 
the possible nonlinear dynamics peculiarities of 
the ship at sea, here the natural wave frequency 
of the ship was varied, or alternatively, 
different but similar ships have been 
considered to be subject to the same wave train. 
Of course, varying the natural frequency would 
entail changes in the other relevant parameters 
too, but this was neglected in this first study. 
 
A comparison between linear in the restoring 
and nonlinear in the restoring is quite 
interesting, especially in the case  03 <α , 
which is the most common for medium size 
ships. It appears that neglecting the righting 
arm non linearity could lead to a significant 
underestimate of the rms rolling. It is also 
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interesting to note that the high bending of the 
response curve in Fig. 4 seems to conduct to 
the possibility of complex dynamics with 
multiple values. The actual possibility of this 
phenomenon will be clarified in further studies 
by improving the solution of the nonlinear 
system of algebraic equations and by going to 
the non-Gaussian approach either following the 
cumulant neglect or the Gram-Charlier way. 
 
The cumulant neglect method tends to become 
not so straightforward by increasing the order, 
since it leads to a large number of equations. 
There is however some possibility to make all 
the process through an automated procedure, as 
indicated in [18], where also some limits of the 
method (convergence) have been indicated. 
The non-Gaussian aspects are non negligible, 
as the numerical simulations have shown. In 
particular the kurtosis can be quite far from the 
Gaussian value. We have not to forget, 
however, that these non-Gaussian effects are 
expected to play a major role in the long term 
prediction, while the spectrum in itself has 
been conceived as a short term description. 
 
 
7. CONCLUSIONS 
 
A nonlinear study of ship rolling in a stochastic 
beam sea represented by the Pierson-
Moskowitz spectrum has been conducted. The 
Gaussian method of the cumulants neglect has 
been used to obtain an approximated solution 
for the variance of the roll random process. 
Preliminary results indicate that the nonlinear 
terms play a relevant role and that it could be 
possible that complex nonlinear dynamics 
takes place in particular cases. 
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